Cette offre n’est plus disponible.

ML-OPS Lead H/F

Résumé du poste
CDI
Paris
Télétravail fréquent
Salaire : Non spécifié
Compétences & expertises
Gestion de l’infrastructure cloud
Kubernetes
Git
Pytorch
Huggingface
+7

Qantev
Qantev

Cette offre vous tente ?

Questions et réponses sur l'offre

Le poste

Descriptif du poste

RESPONSIBILITIES

As the ML Ops lead at Qantev, you will get an opportunity to:

  • Set the guidelines and standards of MLOps at the company

  • Design and manage ML pipelines, from data ingestion and model training to deployment and monitoring

  • Ensure safe, stable and performant deep learning model deployment in both real-time and batch flows, considering latency, reliability and scalability

  • Implement best practices for version control, CI/CD, and model reproducibility for the ML/DL models

  • Develop and maintain infrastructure for automated model training and retraining.

  • Monitor model performance and implement alerting mechanisms to identify issues such as data-drift and others.

  • Collaborate with data scientists and software engineers to optimize ML workflows.

  • Manage cloud infrastructure and resources to support ML workloads efficiently


Profil recherché

REQUIREMENTS

  • +5 years of experience in MLOps, DevOps or software engineering, with focus on ML/AI systems.

  • Strong experience with cloud platforms (AWS, Azure, GCP) and their ML services.

  • Proven experience in deploying and managing ML models in production.

  • Strong programming skills in Python, Linux (Bash) and proficiency with ML frameworks like PyTorch, HuggingFace, ONNX, etc.

  • Strong knowledge of containerization (Docker) and orchestration tools (Kubernetes).

  • Experience with CI/CD pipelines, monitoring tools, and version control (Git).

  • Familiarity with data pipeline tools (Airflow, Apache Kafka, Dagster) and model monitoring frameworks.

  • Expertise in managing and optimizing cloud-based resources for ML workloads.

  • Strong communication and presentation skills, with the ability to convey complex concepts to non-technical audiences

  • Experience in developing APIs

  • Experience with ML versioning tooling, including data versioning and model registries.

  • Fluency in English. Any additional language is a plus

Bonus skills:

  • Experience in the health insurance industry

  • Experience with setting up and managing GPUs for Accelerated Deep Learning

  • Strong background on Deep Learning


Déroulement des entretiens

  • Talent Acquisition interview

  • Tech Interview 1: Machine/Deep Learning

  • Tech Interview 2: Infra/Software/Devops/MLOps

  • On-Site Interview with the CTO

Envie d’en savoir plus ?

D’autres offres vous correspondent !

Ces entreprises recrutent aussi au poste de “Data / Business Intelligence”.

  • Health Data Hub

    Expert data SNDS H/F

    Health Data Hub
    Health Data Hub
    CDI
    Paris
    Télétravail occasionnel
    Intelligence artificielle / Machine Learning, Santé
    110 collaborateurs

  • Mistral Ai

    AI Scientist - Robotics

    Mistral Ai
    Mistral Ai
    CDI
    Paris
    Télétravail fréquent
    Intelligence artificielle / Machine Learning, IT / Digital
    280 collaborateurs

  • Artefact

    Data Science Manager - Marketing (m/f/d)

    Artefact
    Artefact
    CDI
    Paris
    Télétravail fréquent
    Intelligence artificielle / Machine Learning, Digital Marketing / Data Marketing
    1 500 collaborateurs

  • H Company

    Member of technical staff (Inference)

    H Company
    H Company
    CDI
    Paris
    Télétravail non autorisé
    Logiciels, Intelligence artificielle / Machine Learning
    75 collaborateurs

  • Artik Consulting

    Consultant.e en Data / IA

    Artik Consulting
    Artik Consulting
    CDI
    Issy-les-Moulineaux
    Télétravail occasionnel
    Salaire : ≥ 60K €
    Intelligence artificielle / Machine Learning, Big Data
    46 collaborateurs

  • Linagora

    MLOps / ML Engineer

    Linagora
    Linagora
    CDI
    Issy-les-Moulineaux
    Télétravail fréquent
    Logiciels, Intelligence artificielle / Machine Learning
    180 collaborateurs

Voir toutes les offres